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Abstract

Identifying causal relationships rather than spu-
rious correlations between words and class
labels plays a crucial role in building robust
text classifiers. Previous studies proposed us-
ing causal effects to distinguish words that
are causally related to the sentiment, and then
building robust text classifiers using words with
high causal effects. However, we find that
when a sentence has multiple causally related
words simultaneously, the magnitude of causal
effects will be significantly reduced, which lim-
its the applicability of previous causal effect-
based methods in distinguishing causally re-
lated words from spurious correlated ones. To
fill this gap, in this paper, we introduce both
the probability of necessity (PN) and probabil-
ity of sufficiency (PS), aiming to answer the
counterfactual question that ‘if a sentence has a
certain sentiment in the presence/absence of a
word, would the sentiment change in the ab-
sence/presence of that word?’. Specifically,
we first derive the identifiability of PN and PS
under different sentiment monotonicities, and
calibrate the estimation of PN and PS via the
estimated average treatment effect, finally the
robust text classifier is built by identifying the
words with larger PN and PS as causally related
words, and other words as spuriously correlated
words, based on with a contrastive learning
approach name CPNS is proposed to achieve
robust sentiment classification.. Extensive ex-
periments are conducted on public datasets to
validate the effectiveness of our method.

1 Introduction

Distinguishing between spurious correlations and
causal relationships in linguistics is crucial for
building robust text classifiers (Sridhar et al., 2018;
Roberts et al., 2020). For example, in the Movies
dataset (Maas et al., 2011) containing IMDB movie
reviews, and is found to have a stronger correlation
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Table 1: The average ATE of positive and negative senti-
ment words as treatments on the Kindle dataset (He and
McAuley, 2016), grouped by the difference in the num-
ber of positive and negative sentiment words excluding
the treatment word.

Positive sentiment words Negative sentiment words

# Pos−Neg ATE # Neg−Pos ATE

0 0.547 0 -0.493
1 0.459 1 -0.498
2 0.289 2 -0.325
3 0.239 3 -0.207

with positive sentiment than excellent (Paul, 2017).
However, from the semantics, it should be excel-
lent instead of and that causes a positive sentiment
of a movie review, and the word and itself does
not necessarily affect the review’s sentiment. This
motivates the construction of robust text classifiers
by identifying and using words that are causally
related to sentiment rather than spurious correlated
ones (Olteanu et al., 2017).

To identify words that are causally related to
the sentiment, previous methods propose to con-
sider a specific word as the treatment word and es-
timate the causal effect on the class labels, whereas
sentences containing the specific word are con-
sidered as belonging to the treatment group and
otherwise to the control group. Typical causal ef-
fect estimation methods include text or propen-
sity matching (De Choudhury et al., 2016; Saha
et al., 2019), augmented inverse propensity weight-
ing (AIPW) (Pham and Shen, 2017; Sridhar and
Getoor, 2019), and representation learning based
methods (Johansson et al., 2016; Veitch et al., 2020;
Wang et al., 2024). These methods also demon-
strate impressive performance in domains such as
recommender systems (Schnabel et al., 2016; Li
et al., 2023a,b) and computer vision (Hu et al.,
2022; Duan et al., 2023).



However, a critical issue when using causal ef-
fects to identify causally related words is that when
multiple causally related words appear in the same
sentence, the causal effect of each causal word on
sentiment drops dramatically, making it difficult
to identify these words. For example, consider
a sentence with positive sentiment – This movie
is excellent and marvelous. When estimating the
causal effect of word excellent on sentiment, the
matched sentences without the word excellent may
be – This movie is [token] and marvelous, in which
[token] is a word other than excellent, and this
sentence may also be recognized as positive senti-
ment. Therefore, the causal effect of word excellent
on the sentence sentiment will be small because
other positive words (e.g., marvelous) also appear
in the sentence. This poses a great challenge to
the effectiveness of previous methods of identify-
ing causally related words by comparing the causal
effects of different words on sentence sentiment.

To empirically reveal the limitations of exploit-
ing average treatment effects (ATEs) to identify
causally related words, we compute the average
ATE of positive and negative sentiment words as
treatments on the Kindle dataset (He and McAuley,
2016). As shown in Table 1, each row shows the
average ATE with a specific gap between the to-
tal positive sentiment words number and the total
negative sentiment words number in the sentence
without computing the treatment word. Despite
the average ATE for positive sentiment words as
treatments is positive in each subgroup, we find
that the absolute value of average ATE decreases
significantly as more positive words are contained
in the sentence, particularly decreasing from 0.547
to 0.239. Similar conclusions also hold for the
cases of negative sentiment words as treatments.
Importantly, this observation reveals an inherent
limitation of using ATE as a proxy to identify the
causally related words, which is irrelevant to ATE
estimation methods. Consequently, if the absolute
value of the ATE for some causally related words
as treatments decreases below a certain threshold,
the causally related words may be incorrectly iden-
tified as spurious correlated words, thus decreasing
the text classifier robustness.

To fill this gap, we aim to answer the counterfac-
tual question, i.e., the highest level in the causal
ladder (Pearl, 2009), ‘if a sentence has a certain
sentiment in the presence/absence of a word, would
the sentiment change in the absence/presence of
that word?’, instead of the interventional question

as in the previous studies, i.e., the second level in
the causal ladder. We introduce both the probabil-
ity of necessity (PN) and probability of sufficiency
(PS) (Pearl, 2022) and theoretically derive the iden-
tifiability results of PN and PS under different sen-
timent monotonicities. We further propose a novel
robust text classification approach, in which the
signs of the estimated ATEs correspond to different
sentiment monotonicities, and words with the low-
est estimated PN and PS are considered as spurious
correlated words and thus removed to achieve ro-
bust text classification. Extensive experiments are
conducted on four public datasets, demonstrating
the superiority of our proposal on both spurious
correlated words identification and robust text clas-
sification. The contributions of this paper can be
summarized as follows.

• We are the first work to point out the inade-
quate of ATE or CATE compared with PN and
PS for identifying causally related words and
spuriously correlated words.

• We design a contrastive-learning probability
of necessity and sufficiency (CPNS) to esti-
mate PN and PS in the sentence classification
task and achieve more accurate sentence clas-
sification via better word identification.

• We conduct extensive experiments on 3 public
datasets and 3 backbones, under both cross-
domain and in-domain settings to validate the
effectiveness of our method.

2 Preliminaries

2.1 Robust Text Classification

In this paper, we consider the task of bi-
nary text classification on the dataset D =
{(s1, y1), ..., (sn, yn)}. We ignore subscripts for
simplicity without ambiguity. For each sentence
s consisting of k words, its sentiment label is bi-
nary, i.e., y ∈ {0, 1}, where 0 denotes negative
sentiment and 1 denotes positive sentiment. By
exploiting a feature encoder g : s 7→ x, we first
transform a sentence s into a dense feature vector
x. To classify the sentiment of the sentence, we
train a binary classifier fθ : x 7→ {0, 1} parameter-
ized by θ by minimizing a pre-defined training loss
L(D; θ), which predicts the sentiment label with
each feature vector x.

To enhance the robustness and transferability
of the classifier, we consider the more fine-grained



Table 2: The sentences can be divided into eight strata
according to the treatment T , observed outcome Y , and
potential outcomes Y (0) and Y (1), with the unobserved
one highlighted in red. For each stratum, counterfactual
necessity and sufficiency either hold (✓), do not hold
(×), or unknown (?).

T Y Y (0) Y (1) Necessity Sufficiency

0 0 0 0 ? ×
0 0 0 1 ? ✓
0 1 1 0 ? ✓
0 1 1 1 ? ×

1 0 0 0 × ?
1 0 1 0 ✓ ?
1 1 0 1 ✓ ?
1 1 1 1 × ?

word-level relationships to the sentiment label, aim-
ing to distinguish the causally related words from
the spurious correlated words. For instance, the
word and is spurious correlated with the positive
sentiment label in the IMDB movie reviews, but
not in the Kindle book reviews. On the contrary,
the causally related words have robust relation-
ships with the class label across different domains,
upon which we can build a more robust text classi-
fier. LetW = {w1, w2, . . . , wA} be all the words
in the training data, we seek to find the words
Wsp = {wsp

1 , wsp
2 , . . . , wsp

B } ⊆ W most likely
to be spuriously correlated to the sentiment label
and Wc = {wc

1, w
c
2, . . . , w

c
C} ⊆ W most likely

to be causally related to the sentiment label. To
achieve robust sentence classification, we remove
Wsp and/orWc from the sentences to train the clas-
sifier, formally f(g(s \Wsp), g(s \Wc), g(s); θ).

2.2 Causal Formulation

We formulate the causally related words identifi-
cation problem using the Neyman-Rubin causal
framework (Imbens and Rubin, 2015). Given a
specific word w, the treatment is set to T = 1 if
w appears in the sentence, otherwise T = 0 if w
does not appear. Let the sentence removing w be
the covariate X , i.e., X = s \ {w} ∈ X . Using
the Neyman-Rubin causal framework, in addition
to the observed sentiment label Y , we denote Y (0)
and Y (1) as the potential outcomes when receiving
treatment T = 0 and T = 1, respectively.

Note that for each sentence one can only observe
one sentiment label Y = (1−T )Y (0)+TY (1), but
not both Y (0) and Y (1), which is also known as

the fundamental problem of causal inference (Hol-
land, 1986; Morgan, 2015). We also assume the
unconfoundedness that (Y (0), Y (1)) ⊥⊥ T | X
and let 0 < P(T = 1|X = x) < 1 for all x ∈ X .
That is, given the sentence removing the treatment
word, the presence or non-presence of the word w
is independent of the potential outcomes, and the
probabilities of presence and non-presence of the
treatment word are both positive.

The most common estimands for measuring the
impact of one specific treatment word on the sen-
timent label are causal effects. Specifically, the
conditional average treatment effect (CATE) with
given covariate X is defined as E(Y (1) − Y (0) |
X), and the average treatment effect (ATE) is de-
fined as E(Y (1) − Y (0)), which is the average
of CATEs over all possible covariate X . Previ-
ous works use the causal effects as auxillary met-
rics to distinguish the causally related words from
spuriously related words (Falavarjani et al., 2017;
Wood-Doughty et al., 2018; Pryzant et al., 2021)–
when a word has a relatively large causal effect on
the class label, it is predicted as a causally related
word. Oppositely, a word strongly correlated with
the class label but not causally related is regarded
as a spuriously correlated word.

3 Proposed Method

3.1 PN and PS
Unfortunately, when there are more than one posi-
tive or negative sentiment words in one sentence,
the magnitude of both CATE and ATE will be sig-
nificantly reduced, which challenges the causally
related words identification. In this paper, instead
of directly using causal effects, we propose to iden-
tify the causally related words via the probabil-
ity of necessity (PN) and the probability of suf-
ficiency (PS). Specifically, we first theoretically
derive the identification results under different sen-
timent monotonicities, and further propose an ro-
bust text classification algorithm by accurately es-
timating the PN and PS and removing a certain
percentage of words with the lowest estimated PN
and PS.

Definition 3.1 (Probability of Necessity (Pearl,
2022)). The probability of necessity is the prob-
ability that sentiment Y = y would not occur in
the absence of word (denoted as T = 0), in the
case where the word and sentiment Y = y did
occur, i.e., P(Y (0) = 1− y | T = 1, Y = y,X).

Definition 3.2 (Probability of Sufficiency (Pearl,



Step1: Choose	the	keyword
by Attention

Step2: Identify the causal word	
by	PN&PS

Step 3: Train sentiment	classifier	
by	Contrastive	learning	

The salads at Carl are so disgusting.

The salads at Carl are so disgusting.

High attention

The salads at Carl are so disgusting.

The salads at Carl are so disgusting.

The salads at Carl are so [Mask].

The salads at [Mask] are so disgusting.

Spurious word Causal wordkeyword keyword

Causal word classifier
The salads at Carl are so disgusting.

PULL distance

PUSH distance

Figure 1: A three-step process consists of selecting keywords, identifying the causal words, and reweighting the
keywords in the training of sentence sentiment classifier.

2022)). The probability of sufficiency is the proba-
bility of the capacity of a word to produce sentiment
Y = 1 − y, in the case where the word is absent
(denoted as T = 0) with sentiment Y = y, i.e.,
P(Y (1) = 1− y | T = 0, Y = y,X).

3.2 Identification and Estimation
Based on the definition of PN and PS, we can ana-
lyze the necessity and sufficiency of the treatment
word for the sentiment of the sentence, as Table 2
shows. Since PN and PS are at the counterfactual
level, we require one more assumption than stan-
dard causal inference for treatment effects.
Assumption 3.1 (Monotonicity). For each word
as treatment, either the word is positively mono-
tonic to the class label Y (1) ≥ Y (0) or negatively
monotonic Y (1) ≤ Y (0).

We argue that this assumption is not strong since
it only requires the sentiment of a word would be
either positive or negative across different sentence
contexts, but can with varying causal effect values.
For example, the causal effect of the word excellent
to the positive sentiment may change according to
different sentence contexts, but barely be negative.
Next, we derive the identifiability of PN and PS un-
der different sentiment monotonicities as follows.
Theorem 3.1 (Identifiability Under Monotonicity).
Under Assumption 3.1 that Y (1) ≥ Y (0), the prob-
ability of necessity and the probability of sufficiency
are identifiable:

P(Y (0) = 0 | T = 1, Y = 1, X)

=1 +
P(Y = 0 | T = 0, X)− 1

P(Y = 1 | T = 1, X)
,

P(Y (1) = 1 | T = 0, Y = 0, X)

=1 +
P(Y = 1 | T = 1, X)− 1

P(Y = 0 | T = 0, X)
.

Under Assumption 3.1 that Y (1) ≤ Y (0), the prob-
ability of necessity and the probability of sufficiency

Algorithm 1: Robust text classification us-
ing words with high probability of necessity
and sufficiency
Input: hyperparameters α, β, k > 0,

training data
D = {(s1, y1), . . . , (sn, yn)};

1 Train an initial classifier f(x; θ) on training
data D;

2 Extract from f(x; θ) the words
{w1, . . . , wM} that are most strongly
associated with each class according to the
initial classifier;

3 for m ∈ {1, . . . ,M} do
4 Estimate P̂(Y | T = 0, X) and

P̂(Y | T = 1, X);
5 Estimate average treatment effect τ̂m of

word wm;
6 if τ̂m ≥ 0 then
7 PNm ←

1 + 1
npos

∑
i:yi=1

P̂(Y=0|T=0,X)−1

P̂(Y=1|T=1,X)
;

8 PSm ←
1 + 1

nneg

∑
i:yi=0

P̂(Y=1|T=1,X)−1

P̂(Y=0|T=0,X)
;

9 else
10 PNm ←

1 + 1
nneg

∑
i:yi=0

P̂(Y=1|T=0,X)−1

P̂(Y=0|T=1,X)
;

11 PSm ←
1 + 1

npos

∑
i:yi=1

P̂(Y=0|T=1,X)−1

P̂(Y=1|T=0,X)
;

12 Rank the words ascendingly by
αPN+ βPS;

13 Classify the words ranked at final K% as
Wc, and others asWsp ;

14 Train a robust f using the loss as Eq (7);
Output: robust transferable text classifier

f(x; θ).



are identifiable:

P(Y (0) = 1 | T = 1, Y = 0, X)

=1 +
P(Y = 1 | T = 0, X)− 1

P(Y = 0 | T = 1, X)
,

P(Y (1) = 0 | T = 0, Y = 1, X)

=1 +
P(Y = 0 | T = 1, X)− 1

P(Y = 1 | T = 0, X)
.

Proof. Without loss of generality, we only prove
the identification of P(Y (0) = 0 | T = 1, Y =
1, X) under the sentiment monotonicity Y (1) ≥
Y (0) in below:

P(Y (0) = 0 | T = 1, Y = 1, X)

=
P(Y (0) = 0, Y = 1 | T = 1, X)

P(Y = 1 | T = 1, X)

=
P(Y (0) = 0, Y (1) = 1 | T = 1, X)

P(Y = 1 | T = 1, X)

=
P(Y (0) = 0, Y (1) = 1 | X)

P(Y = 1 | T = 1, X)
, (1)

where the first equality holds directly from the defi-
nition of conditional probability, the second equal-
ity is from the consistency assumption, and the
third equality is from the strong ignorability as-
sumption.

For the P(Y (0) = 0, Y (1) = 1 | X) term in the
numerator, we have the following results:

P(Y (0) = 0, Y (1) = 1 | X)

=
(
P(Y (0) = 0, Y (1) = 1 | X) + P(Y (0) = 1, Y (1) = 1 | X)

)
+
(
P(Y (0) = 0, Y (1) = 0 | X) + P(Y (0) = 0, Y (1) = 1 | X)

)
−
(
P(Y (0) = 0, Y (1) = 0 | X) + P(Y (0) = 0, Y (1) = 1 | X)

+P(Y (0) = 1, Y (1) = 0 | X)︸ ︷︷ ︸
equals to 0 because Y (1)≥Y (0)

+P(Y (0) = 1, Y (1) = 1 | X)
)

= P(Y (1) = 1 | X) + P(Y (0) = 0 | X)− 1

= P(Y = 1 | T = 1, X) + P(Y = 0 | T = 0, X)− 1.

(2)

Combining Eq. (1) and Eq. (2) identifies PN as:

P(Y (0) = 0 | T = 1, Y = 1, X) = 1 +
P(Y = 0 | T = 0, X)− 1

P(Y = 1 | T = 1, X)
.

(3)

The rest of the identifiability results can be obtained
by following a similar argument.

The theoretical results above not only provide
the proof of identifiability for PN and PS, but also
explicitly show plausible estimators with observed
variables. For example, the RHS of 3 is only about
the distribution of observed data (Y, T,X).

Table 3: Summary statistics of datasets.

Dataset Food IMDB SST-2
Samples 17,273 35,000 67,349
Positive samples 13,618 17,540 37,569
Negative samples 3,656 17,461 29,781

3.3 Robust Sentiment Classifier Training
From Theorem 3.1, we note that the identifica-
tion results under Y (1) ≤ Y (0) (negative senti-
ment words) and Y (1) ≥ Y (0) (positive sentiment
words) are different. This motivates us to first de-
termine whether Y (1) ≥ Y (0) or Y (1) ≤ Y (0),
which is obtained by the sign of estimated ATE τ̂m
(line 6), then estimate the PN and PS for each treat-
ment word. To reduce computational cost, with the
training data D, we first train an initial classifier
f(x; θ) to find the candidate words {w1, . . . , wM}
which are mostly correlated with the class label
(lines 1 to 2). Then we take each candidate word
wm,m ∈ {1, 2, . . . ,M} as the treatment word and
estimate its PN and PS (lines 3 to 11). Then we
compute the aggregation αPN+βPS for each can-
didate word as Agg1, Agg2, . . . , AggM . Denote
the upper k% quantile of these aggregations as
Agg(k%), then causally related words are identi-
fied as:

Wc = {wm : m ∈ N, 1 ≤ m ≤M,Aggm ≥ Agg(k%)}.
(4)

And the spuriously correlated words are oppositely
identified as:

Wsp = {wm : m ∈ N, 1 ≤ m ≤M,Aggm < Agg(k%)}.
(5)

Let Lce be the cross-entropy loss for sentence clas-
sification task, and Lcon be the contrastive loss as
follows:

Lcon = sim(g(s), g(s \Wsp))− sim(g(s), g(s \Wc)),

(6)

where sim means the cosine similarity. To obtain
a robust sentence classifier f(g(·)), we finally use
the following training loss:

L = Lce + λLcon, (7)

where λ > 0 is a hyperparameter.
We summarize the overall algorithm in Algo-

rithm 1. Notice that the proposed algorithm does
not require accurate estimations of PN, PS, or ATE.



Table 4: Model Performance in cross-domain scenario. For example, Food→ IMDB means training sentiment
classification model in the Food dataset and evaluating such model in the IMDB dataset.

Backbone Method Accuracy

Food→ IMDB Food→ SST-2 IMDB→ Food IMDB→ SST-2 SST-2→ Food SST-2→ IMDB

BERT

Vanilla 76.8992 ± 0.1397 74.7920 ± 0.5986 84.0926 ± 0.0989 83.8881 ± 0.3337 81.3165 ± 0.2504 83.0483 ± 0.1395

IPS 75.0492 ± 0.1646 75.2224 ± 0.5952 84.5926 ± 0.1228 83.5868 ± 0.4895 79.6684 ± 0.2207 82.0075 ± 0.1421

Macthing 76.9100 ± 0.1153 76.3974 ± 0.6026 86.2862 ± 0.1063 85.6815 ± 0.4246 82.7475 ± 0.2751 83.9517 ± 0.1098

DR 77.5504 ± 0.1311 76.0091 ± 0.5712 86.1915 ± 0.1325 85.4389 ± 0.4277 83.8937 ± 0.2582 82.1909 ± 0.1259

Tarnet 77.8892 ± 0.1298 77.2310 ± 0.5669 86.3300 ± 0.1678 85.7963 ± 0.4352 82.4399 ± 0.2635 83.4027 ± 0.1326

CPNS 78.3375 ± 0.1251 77.7762 ± 0.5424 86.4512 ± 0.1293 86.7145 ± 0.3221 84.3810 ± 0.2598 84.8827 ± 0.1242

RoBERTa

Vanilla 85.1983 ± 0.1499 80.8895 ± 0.4482 88.8889 ± 0.0934 84.3469 ± 0.2468 85.0392 ± 0.2680 86.5325 ± 0.1875

IPS 85.4346 ± 0.1327 81.3142 ± 0.4886 90.3285 ± 0.1082 85.4532 ± 0.6639 86.0248 ± 0.1937 85.8912 ± 0.1729

Macthing 85.2917 ± 0.1234 81.0364 ± 0.5674 90.7609 ± 0.1314 85.7532 ± 0.6639 85.5943 ± 0.2395 86.0975 ± 0.1754

DR 85.3427 ± 0.1416 81.3728 ± 0.5126 90.8327 ± 0.0927 85.3785 ± 0.2451 86.2873 ± 0.1812 86.4731 ± 0.1847

Tarnet 85.5827 ± 0.1658 81.8789 ± 0.5966 89.2054 ± 0.1038 86.2841 ± 0.5746 86.1724 ± 0.1863 87.2145 ± 0.1639
CPNS 85.6083 ± 0.1139 81.6786 ± 0.5013 90.7088 ± 0.0830 86.8732 ± 0.6080 89.9024 ± 0.2067 86.6217 ± 0.1671

ALBERT

Vanilla 81.4591 ± 0.4322 81.4431 ± 0.6104 85.2347 ± 0.0877 85.1937 ± 0.5085 83.1485 ± 0.2108 84.6483 ± 0.1391

IPS 80.6608 ± 0.1454 81.5638 ± 0.7462 84.8704 ± 0.2109 87.2066 ± 0.3064 82.6841 ± 0.2253 84.3176 ± 0.1417

Macthing 82.3450 ± 0.1952 81.8508 ± 0.5676 81.0421 ± 0.2459 86.5423 ± 0.5586 83.2167 ± 0.2021 84.4798 ± 0.1473

DR 80.9235 ± 0.1762 80.4723 ± 0.7311 86.4012 ± 0.1938 86.8742 ± 0.4661 83.4182 ± 0.1895 84.0061 ± 0.1406

Tarnet 83.0824 ± 0.1387 82.3452 ± 0.7705 85.6414 ± 0.2317 86.8192 ± 0.4821 83.4821 ± 0.2014 85.2145 ± 0.1536
CPNS 84.5300 ± 0.1219 82.6858 ± 0.6798 87.7744 ± 0.2413 87.8680 ± 0.4071 83.9764 ± 0.1612 85.1917 ± 0.1172

For PN (PS), we only need to make sure the up-
per k% words have larger aggregated PN and PS
estimation than the lower 1 − k% words. While
for ATE, the only requirement is that the sign of
τ̂m is correct. This further enhance the robustness
of our algorithm in addition to the advantages of
the metrics PN and PS themselves over the widely
adopted causal effects.

4 Experiments

In this section, we conduct extensive experiments
on our proposed method, aiming to answer the
following research questions (RQs):

• RQ1: Can CPNS eliminate spurious corre-
lations and perform better in cross-domain
settings?

• RQ2: Can our method maintain its advantage
in in-domain scenarios?

• RQ3: Does CPNS outperform traditional
causal effect estimation methods in identify-
ing causal words?

• RQ4: How sensitive is the model’s perfor-
mance to changes in its hyperparameters?

4.1 Experimental Setup
Datasets. We conduct the sentiment analysis ex-
periments on three widely-used datasets: FineFood
(Food) (McAuley and Leskovec, 2013), IMDB
movie reviews (IMDB) (Maas et al., 2011), and

Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013). The summary statistics are shown
in Table 3. Positive sample means the sentence
with positive sentiment, and vice versa.

Backbone Models. We use standard PLMs includ-
ing BERT (Devlin, 2018), RoBERTa (Liu, 2019),
and ALBERT (Lan, 2019) as the backbone models
for obtaining the embedding of sentences and top
words. In addition, for our method, we use the
MLP as the backbone model for learning balanced
representation.

Baselines. This paper employs several causal ef-
fect estimation methods to achieve robust sentiment
classification. Specifically: IPS (Saha et al., 2019)
estimates the conditional probability of receiving
a treatment given confounders (i.e., sentences) us-
ing propensity scores. These scores are then used
to generalize across sentences, enabling unbiased
causal effect estimation. DR (Sridhar and Getoor,
2019) models both the treatment assignment and
the outcome. It has the desirable property that
the effect estimate remains unbiased as long as ei-
ther the treatment or outcome model is unbiased.
Matching (Wang and Culotta, 2020) aims to con-
struct treatment and control groups with similar
confounder distributions. For example, it groups
sentences based on representations and then esti-
mates the causal effect within each group. Tar-
net (Peng and Li, 2025) incorporates observed
treatment assignment information and updates the
representations using machine learning architec-



Table 5: The accuracy performance of the model under
the in-domain scenarios.

Backbone Method Accuracy

Food IMDB SST-2

BERT

Vanilla 95.1397 89.3167 90.5638
± 0.1007 ± 0.1062 ± 0.3618

IPS 95.0212 88.9050 91.1908
± 0.0964 ± 0.1031 ± 0.4217

Macthing 95.9865 89.1433 92.0803
± 0.1186 ± 0.0751 ± 0.3443

DR 95.9529 89.2021 92.7632
0.0822 ± 0.0712 ± 0.3684

Tarnet 95.3283 89.4058 92.1024
± 0.0777 ± 0.0688 ± 0.3729

CPNS 96.2037 89.6367 93.6744
± 0.0968 ± 0.0749 ± 0.3874

RoBERTa

Vanilla 96.1145 89.8967 93.4911
± 0.1399 ± 0.0696 ± 0.2485

IPS 95.8731 89.4278 93.2385
± 0.0925 ± 0.0687 ± 0.3614

Macthing 96.3636 90.7992 93.4290
± 0.0731 ± 0.0762 ± 0.3839

DR 96.7013 90.5126 93.4290
± 0.0852 ± 0.0663 ± 0.3839

Tarnet 97.0589 90.0200 93.7654
± 0.0635 ± 0.0751 ± 0.3341

CPNS 97.0943 91.6723 94.0890
± 0.0872 ± 0.0634 ± 0.3195

ALBERT

Vanilla 95.7710 88.9367 89.9208
± 0.0900 ± 0.0552 ± 0.3422

IPS 95.5783 89.0858 90.1685
± 0.1088 ± 0.1275 ± 0.3821

Macthing 96.0943 88.9017 90.7076
± 0.0768 ± 0.0852 ± 0.3684

DR 96.0427 89.0347 90.8653
±0.0821 ± 0.0733 ± 0.3957

Tarnet 95.8421 89.0925 90.9615
± 0.0762 ± 0.0815 ± 0.3627

CPNS 96.1094 89.4275 91.1047
± 0.0720 ± 0.0727 ± 0.3445

tures within a causal representation framework to
estimate causal effects. Notably, we also include a
baseline model, Vanilla, which uses only the orig-
inal backbone model without removing spurious
correlations.

Implement Details We utilize a setup of 8 NVIDIA
3090 GPUs for parallel computing, supported by
300GB of memory. It takes approximately 5 hours
to train for 10 epochs on the Food dataset.

4.2 Cross-Domain Performance (RQ1)
We conduct experiments across three benchmark
datasets using three widely adopted backbone mod-
els. We compare our method, CPNS, with several

BERT RoBERTa ALBERT0.3
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(a) The performance on the Food dataset.
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(b) The performance on the IMDB dataset.
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0.4
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(c) The performance on the SST-2 dataset.

Figure 2: Performance comparison between causal
effect-based methods and the CPNS for causal word
identification.

representative causal inference baselines. In par-
ticular, we focus on the cross-domain sentiment
classification setting, where the model is trained
on one dataset (source domain) and evaluated on
another (target domain), a scenario that is more
challenging due to domain shift and spurious cor-
relations. We report classification accuracy on the
target domain as the primary evaluation metric.

As shown in Table 4, all causal baselines gener-
ally outperform the vanilla backbone model, con-
firming the necessity of identifying causally related
words and removing spuriously correlated ones in
sentiment analysis. Among these baselines, IPS
and Matching are consistently outperformed by
more advanced methods such as DR and TARNet.

Our proposed method CPNS achieves the best
or second-best accuracy in all scenarios, consis-
tently outperforming existing approaches. This
improvement stems from a key limitation in tra-
ditional causal effect estimation: when multiple
sentiment-related words appear in a sentence, the
magnitudes of average treatment effect (ATE) and
conditional average treatment effect (CATE) are of-
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Figure 3: The variation in the model’s performance under different parameters.

ten diluted, which compromises the identification
of truly causal words.

4.3 In-Domain Performance (RQ2)

To evaluate the in-domain effectiveness of CPNS,
we train and test the model on the same dataset
across three domains: Food, IMDB, and SST-2. As
shown in Table 4, CPNS consistently achieves the
highest or competitive accuracy across all back-
bones and datasets.

The superior in-domain performance of CPNS
can be attributed to its better identification of causal
words and its ability to suppress spurious correla-
tions without losing semantically meaningful infor-
mation. Unlike methods that rely purely on global
statistical adjustments, CPNS accurately identifies
causally relevant words using PN and PS, ensuring
that essential sentiment cues are preserved.

In addition, our use of contrastive learning fur-
ther strengthens this capability: the model is trained
to down-weight the influence of spurious words
while simultaneously enhancing the representations
of truly causal words. This dual mechanism allows
CPNS to eliminate misleading associations while
maintaining or even reinforcing genuine sentiment
signals, which is crucial even when there is no
domain shift.

4.4 Causal Word Identification (RQ3)

As shown in Figure 2, CPNS consistently achieves
the highest AUC scores across all datasets and
model architectures, clearly outperforming all base-
lines. For example, on the SST-2 dataset, CPNS
achieves an AUC above 0.8 when using ALBERT,
while other methods fall significantly behind. This
demonstrates the superiority of CPNS to distin-
guish causally related words from spuriously corre-
lated ones.

These results validate the effectiveness of our
CPNS framework for causal word identifica-
tion and highlight its robustness across different

datasets and backbones, making it a more reliable
foundation for real-world sentiment analysis tasks.

4.5 Parameter Sensitivity Analysis (RQ4)

To assess the parameter sensitivity of CPNS, we
conduct experiments using five values for each of
three key hyperparameters, as shown in Figure 3.
Causal Word Ratio k. Keywords are ranked based
on a linear combination of their PN and PS scores,
with the top k% treated as causal. The results
show that performance peaks at k = 20%, suggest-
ing that a moderate proportion of high-confidence
causal words strikes a good balance between retain-
ing meaningful information and avoiding spurious
correlations.
Coefficient Ratio α/β. The best accuracy is
obtained when PN and PS are equally weighted
(α/β = 1.0). Performance drops slightly as the
ratio deviates from 1.0, indicating that both PN
and PS contribute equally to reliable causal word
identification.
Contrastive Loss Coefficient λ. Performance is
maximized at λ = 0.75. Smaller values weaken the
effect of contrastive learning, while larger values
cause the model to overemphasize contrastive loss,
harming classification accuracy.

5 Conclusion

This paper proposes a novel method for distinguish-
ing causal and spurious words in sentiment classi-
fication by leveraging the probability of necessity
(PN) and the probability of sufficiency (PS), aiming
to eliminate linguistic spurious correlations. Theo-
retically, we derive the identifiability conditions of
PN and PS under different sentiment monotonicity
assumptions. Empirically, we conduct extensive
experiments across multiple datasets and backbone
models, covering both cross-domain and in-domain
scenarios, to demonstrate the effectiveness of our
method in causal word identification and sentence
sentiment classification.



Limitations

One possible limitation of this paper is that the
monotonicity assumption may be violated for a few
sentences with the presence of words like negation
words. Specifically, we assume that adding posi-
tive (negative) sentiment words will monotonically
increase (decrease) the probability of getting a pos-
itive label. While convenient for identification, this
assumption can be violated by natural language
constructs. For example, negation words such as
not, never, and hardly will invert or attenuate sen-
timent and break monotonicity. When such non-
monotonic examples arise, the exact identifiability
of PN and PS breaks down, yielding only bounded
or partial estimates. Addressing this issue may re-
quire relaxing the monotonicity assumption, for
instance via partial monotonic models or by deriv-
ing PN/PS under weaker conditions (e.g., bounded
identification).
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A Appendix

A.1 Attention-based Keywords Selection
We additionally employ an attention-based method
to extract salient tokens. After training a model
using cross-entropy loss Lce, which may induce
reliance on a small set of keywords, we com-
pute attention scores over input tokens. Let a =
[a1, . . . , aT ] ∈ RT denote the attention weights as-
signed to each token ti. The score for a token t is
then computed as:

sattn(t) =
∑

(x,y)∈D

1

nt,x

∑
i∈{1,...,T}

I(ti = t) · ai
∥a∥

,

(8)

where I is an indicator function and ∥·∥ denotes the
ℓ2 norm. To select the final keywords, we choose
the top K tokens with the highest scores according
to Eq.(8) (Moon et al., 2021).

A.2 Causal Word Label Generation Process
Label Generation Process. We detailed the label
generation process as follows:

• Step 1 Keyword Generation. We first use
sentiment classification PLMs, such as BERT,
to select the words with most strong correla-
tion with sentiment labels as keywords.

• Step 2 Editing Prompt. Then we edit the
following prompt for each keyword: “In the
sentiment classification task, please judge
whether the word [keyword] can be used as a
basis for sentiment classification without any
additional explanation. Answer ’yes’ or ’no’.

• Step 3 Generating Causal Label Afterwards,
we will input the edited prompt into LLM
(GPT-o1) to generate the causal label.

• Step 4 Manual Verification After generat-
ing the causal label, we manually verify and
correct it.

Evaluation of the Quality. We used human-
corrected results as the golden label and evalu-
ated the labels generated by the LLM (GPT-o1)
using Accuracy, F1, Sensitivity, and Specificity.
(Where Sensitivity represents the ability to identify
causal words, and Specificity represents the ability
to identify spurious words.)
Sample of the Results. Taking the Food dataset as
an example, the LLM labeled 200 keywords which

Table 6: Validation on Annotation Quality of Causal
Words Generated by LLM.

Model Dataset Accuracy F1 Sensitivity Specificity

BERT IMDB 97.00% 93.75% 95.74% 97.39%
SST-2 96.00% 90.00% 92.31% 96.89%
Food 97.00% 93.02% 93.02% 98.09%

RoBERTa IMDB 98.00% 94.44% 97.14% 98.18%
SST-2 97.50% 95.12% 96.08% 97.99%
Food 98.00% 92.31% 96.00% 98.29%

ALBERT IMDB 98.00% 92.86% 100.00% 97.70%
SST-2 99.00% 98.04% 100.00% 98.67%
Food 97.50% 92.75% 94.12% 98.19%

Average − 97.56% 93.59% 96.05% 97.93%

have a high coefficient in the sentiment classifica-
tion BERT model.

Keywords: collects, calculated, unusually, en-
sued, carl, pension, merry, surpassed, ...

Causal words labeled by LLM: unusually, sur-
passed, snatched, repulsed, haunting, stunning, ...

Manually corrected word: merry should be
causal word; snatched should not be causal word.
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